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Transport Properties of Fluid Mixtures in the 
Critical Region I 

j .  L u e t t m e r _ S t r a t h m a n n  2. 3 and  J .  V, S e n g e r s  2'4' 5 

Transport properties of fluid mixtures exhibit anomalous behavior near the 
vapor-liquid critical line. These anomalies are a result of long-range fluctuations 
in the system in the vicinity of a critical point. We use mode-coupling theory to 
describe the critical enhancements of the thermal conductivity, the viscosity, the 
mutual diffusivity, and the thermal-diffusion coefficients of binary mixtures. The 
resulting expressions not only are valid in the asymptotic critical region but also 
describe the crossover to regular behavior far away from a critical point. The 
crossover functions depend on the thermodynamic properties of the mixtures, 
background values of all transport coefficients, and two concentration-dependent 
cutoff wave numbers. We compare the proposed crossover model with experi- 
mental thermal-conductivity data for mixtures of carbon dioxide and ethane in 
the critical region and find good agreement between theory and experiment. 
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1. I N T R O D U C T I O N  

M a n y  t r a n s p o r t  p r o p e r t i e s  o f  f lu ids  e x h i b i t  s i n g u l a r  b e h a v i o r  n e a r  a 

c r i t i ca l  p o i n t .  T h e  t h e r m a l  c o n d u c t i v i t y  in a o n e - c o m p o n e n t  f luid,  for  

e x a m p l e ,  d i v e r g e s  n e a r  t h e  v a p o r - l i q u i d  c r i t i ca l  p o i n t ,  wh i l e  t he  m u t u a l  
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diffusivity vanishes near a critical point of a binary mixture [-1, 2]. Far 
away from a critical point, on the other hand, transport coefficients are 
generally slowly varying functions of the temperature and density. When 
this regular behavior is extrapolated into tile critical region, one arrives at 
a separation of tile transport coefficients into so-called background con- 
tributions and critical enhancements [,I]. The critical enhancements are a 
result of long-range fluctuations in the system in the vicinity of the critical 
point and can be understood as resulting from nonlinear coupling between 
the hydrodynamic modes of the system. Asymptotically close to the critical 
point, the enhancements satisfy power laws with universal critical 
exponents [3]. The asymptotic critical region, though, is usually much 
smaller than the region in which critical enhancements are observed 
experimentally [-4]. Tile range of temperatures and densities in which the 
transport coefficients are described neither by their background values 
nor by asymptotic power laws is the so-called crossover region. For the 
transport properties of one-component fluids, Olchowy and Sengcrs [5]  
developed a crossover model based on mode-coupling theory [6, 7]. It 
describes the critical enhancements of the thermal conductivity and the 
viscosity with the aid of crossover functions which depend on the thermo- 
dynamic properties, the background values of the transport coefficients, 
and one adjustable parameter, namely, a wave-number cutoff for the order- 
parameter fluctuations. The crossover functions incorporate the predicted 
asymptotic behavior of the critical enhancements and provide a smooth 
transition to the classical region where the order-parameter fluctuations are 
no longer important. 

In this paper we present an extension of the theory to the transport 
properties of compressible binary fluid mixtures near the critical line. We 
calculate mode-coupling contributions to the decay rates of the relevant 
hydrodynamic modes and derive crossover functions that describe the 
critical enhancements from the asymptotic critical region to the classical 
region. The resulting expressions for the enhancements of the viscosity, the 
thermal conductivity, the mutual diffusivity, and the thermal-diffusion ratio 
depend on the thermodynamic properties of the mixture, the background 
values of the transport coefficients and two adjustable, concentration- 
dependent cutoff wave numbers. 

2. ASYMPTOTIC PREDICTIONS 

The transport properties of interest in the critical region are the 
viscosity q, the thermal conductivity ~., the mutual diffusivity D =  L/Z ~, 
where L is a "'mass conductivity" and Z~- is the osmotic susceptibility, and 
the thermal-diffusion coefficient kTD, where kT is the thermal-diffusion 
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ratio. The background contributions ~I b, )b,  L b, and (kTD) b are, in general, 
slowly varying functions of the temperature, density, and composition of 
the mixture, whereas the critical enhancements are predicted [8-10]  to 
satisfy power laws in the asymptotic critical region in terms of the correla- 
tion length ,..-" of the order-parameter fluctuations. More specifically, the 
viscosity i t exhibits a weak singulrity q ~ ~:',, where : ,  = 0.063 is the critical 
exponent of the viscosity. The thermal conductivity reaches a finite value 
at the critical point A).~ ~", whereas the critical enhancement AL of the 
mass transfer coefficient diverges like ~ ' :',~ : " ~ ~, where ;' = 1.239 and 
v =  0.63 are static critical exponents. Finally, the critical enhancement of 
the thermal diffusion coefficient vanishes at the critical point . J ( k v D ) ~  0. 
These asymptotic predictions are valid only in an extremely small region 
around the vapor-liquid critical line. Measurements on ~He + 4He [11], 
methane +e thane  [12, 13], and CO,  +e thane  [14] seem to indicate that 
the thermal conductivity exhibits a diverging critical enhancement, just like 
in a pure fluid, rather than approach a constant value as predicted by 
theory. We return to this point when we compare our crossover model with 
experimental data. 

3. T H E O R E T I C A L  BASIS OF THE CROSSOVER M O D E L  

A compressible binary fluid mixture near the critical line has four 
relevant hydrodynamic modes, namely, two viscous modes, a heat mode, 
and a concentration mode [6].  The viscous modes correspond to fluctua- 
tions of the transverse components of the velocity u~q '~ with 

I",," IZ> = k .  TI'/'P, u.= 1 "~ (1) 

where q is the wave vector of the mode, k~ is Boltzmann's constant, T is 
the temperature, I" the volume, and p tile mass density of the mixture. The 
heat mode represents fluctuations of the entropy at constant pressure and 
constant composition S~ with 

< Igql-" ) = k ,  VI,(',., (q) 12) 

where ('/,., is the isobaric specific heat capacity at constant composition. 
The concentration mode represents fluctuations of the mass fraction c at 
constant pressure and temperature ('q with 

(Ic~l-" ) = kH TI"7.~.( q )/p (3) 

The osmotic susceptibility Z~=(PC/~'p)p.T is tile derivative of the mass 
fraction c of component  2 with respect to the chemical potential of the 
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mixture lZ = lt,_/m,_ - ll)/mt, where Iti is the chemical potential of component 
i and m~ its mass per molecule. 

The kinetic equations for these modes were derived by Kawasaki [6]  
under the assumption that one mode couples to at most two others. 
Neglecting less important terms in the critical region, we obtain 

- q" qb 
" ~ [ l l q  = P " q 

i i 
l'(ttq' ;Sk, S q k)SkSq k+-~Z VluT";Ck, Cq kICkt..'q k 

- -  k ~ k 

(4) 

"~ h "~ b " S T .  x T .  ~ -q-Dss(q)S  q-q-Ds~(q)c q + j q + ~  l ' (Sq 'Sk,  uq k)SkUq k (5) 
k , : ~  

? 
sq = 

? 
- -  "~ b ~ b T . : t  . T . ~ t  otcq=-q-D¢¢(q)Cq-q-D~s(qJSq+J"q+~ V(cq;Ck, U q k)~kUq ~ (6) 

k . x  

where the coefficients V(i; j, I) denote the strength of the nonlinear coupling 
between the modes and where ./.i represents the noise in the variable i. 
Dbs and D h are background values of the diffusion coefficients associated c c  

with the heat mode and the concentration mode, respectively, while D b 
c S  

and D" s~ are background values of the coefficients associated with the cross 
processes. 

With the aid of Green's functions techniques we derive mode-coupling 
integrals from these equations which we solve by the iterative procedure 
employed by Olchowy and Sengers [51 for the crossover model of the 
transport properties of one-component fluids. This leads to a crossover 
description for the critical enhancements of the transport coefficients in 
Eqs. (4)-(6) in the form 

d~l=q"(e:"n--l) with lim H = l n  ~ +const  (7) 

kt~T(2~ with lim .Q~= 1 (8) A D~,~ = 6rUl~ ~ ~ 

_ kBTf2 
ADds- 67Ul ~ ~s with ¢~,-lim (2~s = 0 (9) 

_/",3 T f2 . .  dDss-67rq ¢ ss with ~-lim~ £2ss=l  (10) 

where we have indicated the asymptotic critical behavior of the crossover 
functions H and (2,. Explicit expressions for the crossover functions are 
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provided elsewhere [ 15, 16]: here we just state that they vanish in the classi- 
cal limit and dcpcnd on the thcrmodynamic propcrtics rr.  ̀  and Z~, thc 
correlation length L.-', which can be estimated from ,..-" z (?P/?p) , , .  r, the back- 
ground values of the transport coefficicnts)?', q~', D h = L~' /Z, ,  and  (k ~ D )  h, 

and two cutoff wave numbcrs qt)h and qm, in the mode-coupling integrals. 
The physical transport cocflicicnts 11 , D. k . r D ,  and ). can now bc 

calculatcd as 

I/= q~'c':"" 11 ) 

D =  D ~ =  D'~[. + "JD~¢ 12) 

k . r D  = IW I ., D~s = per . , (  D I' ~s + JD~s) 13 ) 

)=£b+p(.r,dDss+ly((kr D)h)2 P(/"rD) -~ 14) 
• "" T z ~ . D  I' T z ~ . D  

The equations for the crossover behavior of the transport properties 
obtained by us differ from and improve upon those proposed by Kiselev 
and Kulikov [17].  

4. C O M P A R I S O N  W I T H  E X P E R I M E N T A L  D A T A  

We have applied the crossover model presented in tile previous section 
to mixtures of carbon dioxide and ethane near the vapor-liquid critical 
line. The thermodynamic properties were calculated with the aid of the 
crossover model for thermodynanaic propcrties recently proposed by Jin 
et al. and reviewed elsewhere [4] .  Values for the backgrounds ).~' of the 
thermal conductivity and I/~' of the viscosity were provided by Vesovic 
and Wakeham [18]. Since there was no information available about the 
mutual difl'usivity and the thernaal-difl'usion coefficient,we represented the 
corresponding background coefficients as 

:XI" 
Dr'=  - (151 

PZ~. 

p \?T),,., +f ib (16) 

and treated as adjustable parameters the backgrovnd wdues :(b and /~h of 
the transport coefficients ~( and fl introduced by Landau and Lifshitz [ 19]. 
One of the cutoff wave numbers mentioned in the previous section can be 
related to the corresponding cutoff wave numbers qD~ and qD2 of the pure 
components. Thus we write 

qt ) , (  = x q [ ) ~  + ( 1  - x ) q l ) /  (17) 

where .v is the mole fraction of carbon dioxide• 
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Fig. 1. Thcrmal conductivity of a mixture of 25" ,  carbon 
dioxide and 75" ,  ethane along the critical isochorc. The 
symbols indicate experimental data obtained by Mostert el 
al. 1_14.20]. the solid line is calculated from our crossover 
model, and the dashed line indicates the background 
provided by Vcsovic and Wakcham [18]. 
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Fig. 2. Thermal  conductivily oi, a mixture of 25 % carbon 
dioxide and 75'% ethane along three off-critical isochores. 
The symbols indicate experimental data obtained by 
Mostert et al. [ 14.20]- the solid lines arc calculated from 
our crossover model. 
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Fig. 3. Thermal conductivity of a mixture of 74"/o 
carbon dioxidc and 26%, ethane along two isochores. 
The symbols indicate expcrimental data obtained by 
Mostert et al. [14, 20]: the solid lines are calculated 
from our crossover model. 
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Fig. 4. The critical enhancement  of the thermal con- 
dt, ctivity of a mixture of 25 % carbon dioxide and 75 % 
ethane along the critical isochorc as calculated from 
our crossover model. 
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We have determined the remaining cutoff wave-number qo~d-x) and the 
background parameters :~b and [~b from a comparison with the experimental 
thermal-conductivity data obtained by Mostert et al. [ 14, 20]. As it turned 
out, for the temperature and density ranges considered here, the back- 
ground ~b can be represented by a single constant for all concentrations. 
The background [~b on the other hand, depends strongly on concentration 
and density but can be considered independent of temperature in the range 
of temperatures that is covered by the thermal-conductivity data. In 
Figs. 1-3 we present a comparison of our model with experimental thermal- 
conductivity data for two mixtures of carbon dioxide and ethane, namely. 
for mole fractions of 25 % CO,  and 74% CO, .  As can be seen from the 
figures, the crossover model provides a representation of the experimental 
data that is indeed quite satisfactory. Furthermore, the thermal conduc- 
tivity rises strongly as the critical point is approached for the range of 
temperatures where experimental data are available. In Fig. 4 we present a 
graph of the calculated thermal conductivity as a function of the reduced 
temperature for near-critical temperatures. This graphs elucidates why 
there is no direct experimental evidence for the theoretical prediction that 
the thermal conductivity reaches a finite value at the critical point. The 
crossover from one-component-like (divergent) behavior to mixture-like 
(constant) behavior of the thermal conductivity occurs so close to the criti- 
cal point that it is not observed in practice for a simple binary mixture such 
as CO2 + C2H6. 

5. CONCLUSIONS 

We have presented a crossover model for the transport properties of 
a binary mixture in the critical region which, with only few adjustable 
parameters, gives a good description of experimental thermal-conductivity 
data near the vapor-liquid critical line. If, for a particular mixture, all 
background transport properties are known, only the cutoff wave numbers 
are adjustable parameters. If, on the other hand, only little information 
about transport properties is available, then the model can be used to 
predict unknown transport properties. For the system investigated in this 
work, for example, values for the mutual diffusivity and the thermal-diffu- 
sion ratio can be calculated from Eqs. (12) and (13) [15, 16]. Finally, the 
model ~xplains why the observed thermal conductivity of simple binary 
fluid mixtures whose components have similar critical temperatures, such 
as CO,  +C_,H 6 or 3He+ 4He [11, 21], behaves like that of a one-compo- 
nent fluid in an appreciable range of temperatures and densities. However, 
one may expect to observe deviations from one-component-like thermal- 
conductivity behavior for mixtures of sufficiently dissimilar components [22]. 
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